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Abstract

As a part of an effort to develop a model-supported method for detection of delaminations in composite beams with
the use of time responses to external excitations, a finite element formulation for dynamics of a composite beam with
delamination and attached piezoelectric actuators is developed. In this formulation account is taken of transverse shear
deformation and nonlinear through-thickness variation of the longitudinal displacement. Parameters that characterize
the delamination are incorporated into the formulation that makes the finite element model convenient for use in
conjunction with damage identification (not discussed in the present paper). Computational predictions of frequencies
show good agreement with experimental results.
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1. Introduction

Mechanical properties of composite materials can degrade severely in the presence of damage. One of
common types of damage modes in laminated composites is interlaminar cracking or delamination. Del-
aminations may develop as a result of manufacturing defects or impact of foreign objects. Delaminations
are known to cause a change in vibration characteristics of composite structures that can be used to detect a
presence of the delamination and estimate its size and location. This can be done by a finite element model
updating to obtain a correct set of physical parameters, characterizing the delamination, that minimize
some measure of discrepancy between the vibration data measured experimentally and obtained from the
finite element model of the delaminated structure.

Some aspects of theory of the model-aided damage detection based on changes of dynamic character-
istics of structures and examples of implementation of the method (for types of damage not related to
delamination) are presented by Natke and Cempel (1997). A review of literature, published before 1997,
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devoted to the subject, which includes detection of delaminations, was published by Doebling et al. (1996).
More recently, the papers regarding the model-based delamination detection were published by Hanagud
with co-authors (for example, Lestari and Hanagud, 1999) and by Chattopadhyay with co-authors (for
example, Chattopadhyay et al., 2000). So, the model-based structural health monitoring with the use of
dynamic response is an active area of research, which requires further development.

The model-aided method of detection of delaminations requires a highly accurate finite element model of
the delaminated structure that contains parameters characterizing delaminations. In order to be accurate,
such a model of a delaminated beam must have a capability to take account of transverse shear defor-
mation, nonlinear through-the-thickness variation of longitudinal displacements, through-the-thickness
continuity of displacements in sublaminates that do not contain delaminations, discontinuity of displace-
ments at the surfaces of the delamination crack, must satisfy stress boundary conditions on the upper and
lower surfaces of the beam, a condition of vanishing of the transverse stresses on the surfaces of the del-
amination crack and a condition of continuity of the transverse stresses at the interfaces between the plies
with different material properties and fiber orientations.

Finite element models for accurate analysis of delaminated plates and beams were created, for example,
by Barbero and Reddy (1991) and Seeley and Chattopadhyay (1999). However, as we understand, in these
models, in order to change a location and size of the delamination crack, a new finite element mesh has to
be constructed, while in our model, presented in this paper, in order to change a location and size of the
crack, one needs only to change values of certain parameters (coordinates of crack tips and distance of the
crack from the middle surface) on which components of stiffness and mass matrices depend. Therefore, in
order to use the other authors’ (referred to) models in model-aided experimental damage identification
procedures, one has to construct a large number of finite element meshes in order to choose among them
the one, which reproduces experimental data as closely as possible. The same is true for modelling del-
aminations with commercially available finite element codes. In addition, the Reddy’s theory for plates
with delaminations is based on a discrete-layer approach, and, therefore, is equivalent to a three-
dimensional (3-D) finite element approach, requiring a large number of degrees of freedom in order to
model a laminated plate or a beam. Therefore, in our opinion, the use of the other authors’ models, as
well as the commercial finite element codes, is not convenient for the model-based health monitoring of
structures.

The model of a delaminated beam, presented in this paper, is developed for the use in damage identi-
fication procedure based on comparing the delaminated beam’s experimentally measured and computed
time responses to excitation from piezoelectric actuators attached to the beam, ' similar to the method
proposed by Banks et al. (1996) for detection of holes in beams. Therefore, in addition to the finite element
for beam’s segment with delamination, we develop a finite element for a beam’s segment with a piezoelectric
actuator on its upper surface. It is assumed, for simplicity, that the segment of the beam covered with the
piezoelectric patch (actuator) does not contain the delamination.

In the present paper we construct a finite element formulation for a beam with a through-width del-
amination, which satisfies the above-mentioned requirements, in such a way that components of the
stiffness and mass matrices depend on three parameters that characterize the location and length of the
delamination crack, and the values of these parameters do not have to be known in order to construct a
finite element mesh. These parameters are coordinates of the tips of the delamination crack, which is as-
sumed to be parallel to the surfaces of the beam. In the finite element analysis of the beam with known
location and length of the delamination crack (direct problem), these parameters are known; but in the

! In this paper, the authors’ goal is to describe the formulation and solution of the problem of analysis of the delaminated beam with
the known location of the delamination (direct problem) and its experimental verification. A description of application of this
formulation to the solution of the problem of the model-based detection of delamination (inverse problem) will be published elsewhere.
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inverse problem of damage identification these parameters are treated as unknowns which are to be
computed by minimizing a certain function that characterizes the discrepancy between the computed and
measured time responses of delaminated beams.

For an initial formulation, we consider only the direct problem of analysis of the beam with the known
location and extent of the delamination crack. Thus, methods of damage identification with the use of the
developed finite element formulation of the delaminated beam are not presented in this paper.

2. Three-dimensional formulation

The 3-D formulation of the problem of dynamics of the composite beam with the delamination crack
and with piezoelectric layers (used as actuators) include the following equations.
Strain—displacement equations:

g _ & ! a—u—k@ g _ (la)
T ox v 2\oy )’ oy
1 /Ou Ow 1 /0v Oow ow
xz — A~ | A ~_ | =5\ A ~. | oz = A lb
¢ 2<az+ax> oz 2<6z+6y) == (1b)
Equations of motion:
Oxxx + O-xy,y + Oxzz = Pu7 G/W(JC + O-}y,y + O-yzz = PU7 Ozxx + Ozyy + Ozzz — pg = pW (2)

We will consider a piezoelectric material, used in the actuator, with orthorhombic mm2 symmetry, such
as polyvinylidene (PVDF) or lead zirconate-titanate (PZT). In the manufacturing process, the planes of
elastic symmetry can be made the same as the planes of piezoelectric symmetry. In this case, the constitutive
relations in the principle material coordinate system have the form (Mitchell and Reddy, 1994; Varadan
et al., 1989; Nix and Ward, 1986; Dunn and Taya, 1993):

(O] C“ C12 C13 0 0 0 0 0 €3] €1
() Clz C22 C23 0 0 0 0 0 €3 &
g3 C13 C23 C33 0 0 0 0 0 €133 &3
04 0 0 0 C44 0 0 0 €24 0 &4
(& = 0 0 0 0 C55 0 €15 0 0 &5 y (3)
O¢ 0 0 0 0 0 C66 0 0 0 &6
D1 0 0 0 0 €15 0 éll 0 0 51
Dz 0 0 0 €24 0 0 0 622 0 gz
D; less ep e 0 0 0 0 0 &nf\ds

where &) are components of the electric field intensity applied to the piezoelectric element; D; are com-
ponents of electric displacement, and ¢;; and e;; are constants that characterize electromechanical properties
of piezoelectric materials (Appendix A). For an orthotropic composite material of the beam that does not
have piezoelectric properties, e; = 0 and ¢;; = 0.

An approximation that the electric field intensity in the piezoelectric actuator under low-frequency
applied voltage is derivable only from a scalar electric potential (Tiersten, 1969) leads to
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Fig. 1. Cantilever beam with delamination and actuator.

We consider a beam with no externally applied loads on the upper and lower surfaces, > therefore stress
boundary conditions on the upper and lower surfaces are

h
0. =0 atz:i§7 (52)
h
O'ZZZO atz=:|:§. (Sb)
Stress boundary conditions at the location of the delamination:
0, =0 atz=zy, xq9 <x< A2, (6)
o.=0 atz=z5, xq <x<xap, ™

where z4 is a z-coordinate of the delamination crack, which is parallel to the surfaces of the beam, x4; and
xq are x-coordinates of the tips of the delamination crack (Fig. 1). For a beam clamped at the edge x = 0,
the boundary conditions at the contour of the beam are:

boundary conditions at the clamped edge are:
ow _
ox

boundary conditions for the stress-free edges can be stated as

w=0, 0 atx=0, (8)

2 Excitation of vibrations of the beam is done with the use of a piezoelectric actuator, attached (glued) to the beam, therefore the
actuator is considered to be a part of the beam, and the force of interaction between the actuator and the beam is not a beam’s
externally applied load.
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b
0x=0, 0,=0, 0,=0 atx=L; 0y=0 0,=0, 0,=0 aty:jzz. 9)

Besides, we have to take into account that displacements can be discontinuous at the location of the del-
amination, i.e. at z = zg, xq; <x <Xg.

3. Development of the one-dimensional beam theory

We are considering a composite cantilever beam with one delamination crack, parallel to the surfaces of
the beam, and one piezoelectric patch, used as an actuator, attached near the clamped edge of the beam.
Two separate types of finite elements will be developed:

1. for the zone with the piezoelectric actuator attached to the upper surface and without delaminations
(zone 1 in Fig. 1);
2. for the zone without actuators and with the delamination crack (zone 2 in Fig. 1).

Zone 2 includes a region with the delamination crack (x4q; <x <xg2) and two regions without delamination
cracks (x; <x < xq1, xg»0 < x<L). In order to analyze a whole beam with the actuator and the delamination
crack, both types of elements will be included into the finite element mesh.

3.1. Simplifying assumptions of the beam theory

The following simplifying assumptions are adopted in order to reduce the 3-D formulation of the
problem to the 1-D beam-type formulation.

Assumption 1. If a beam is narrow in both the y-direction and the z-direction, and not loaded in these
directions, then stresses g, and o.., can be set equal to zero:

o, =0, 0., =0. (10)

Under this assumption, the requirement that ¢., = 0 at upper and lower surfaces of the beam (Eq. (5b))
and at the location of the delamination (Eq. (7)) is satisfied.

Assumption 2. In our problem, the external electric field will be applied to the piezoelectric actuators only in
the z-direction (perpendicular to the planes of piezoelectric films). Therefore,

& =6,=0. (11)

Assumption 3. If at each point of the actuator and the beam there is a plane of elastic symmetry parallel to
the x—z plane (for the beam this can occur in case of [0°/90°] ply lay-up), the transverse load intensity, ¢.,
does not vary in the y-direction, and there is no load in the y-direction, ¢, = 0, then (Lekhnitskii, 1963)
u_, o
oy Oy
If, in addition, a material of the piezoelectric actuator has an orthorhombic mm2 symmetry (PVDF or lead

PZT) and its planes of piezoelectric symmetry are aligned with the planes of elastic symmetry of itself and of
the composite material of the beam, then the piezoelectric constant g;, is equal to zero,

03 =0, (12b)

v =0, 0. (12a)
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due to transformation equation g5, = (95, — 03,) cos 6 sin 0 (Appendix A, Eq. (A.17)), where, in view of our
assumptions, 6§ = 0° or 8 = 90°. In this case, the two other stresses associated with the y-direction are equal
to zero:

Oy =0, = 0. (13)
Indeed,
if v=0, 2—;[/_0, Zly”:o, then sxy—%<2—z+%)—0, aﬂ_%(g+aa—vyv>_0,
and, therefore, according to Egs. (A.16) and (A.17) in Appendix A,
ny=§662&+\@3/6/<§z:0, Gyz:QMZ\S,:ZJ‘*‘&%H"‘QM\@C%"‘@M@:O-
0 0 0 0 0

In the last equation, the elastic coefficient Qs is set equal to zero for the composite beam with [0°/90°] ply
lay-up in view of the transformation equation Q5 = (Qss — Qu44) cos 0sin 0 (Appendix A, Eq. (A.17)).

In view of Egs. (10)—(13), the constitutive equations for a material of the piezoelectric actuator attached
to a narrow beam, in a problem coordinate system, take the form (Appendix A, Eq. (A.36)):

1 9 &
g S]] S]I Fel
XX 0 _L O XX
O p = Sss 2e. o, (14)
Dz 3 0 3 ‘3321 22
=L — + 2L 0z
S C33 S

where ¢, is the scalar electric potential, defined by formula (4); the compliance coeflicients in the problem
coordinate system, S;; and Sss, are expressed in terms of the engineering constants by the formulas (Ap-
pendix A, Eqgs. (A.32) and (A.33))

— 1 1 Vi2 — 1 1

S :—4 —4 ——2— 202 S :—2 —2 15
11 c +—==s +<G12 E1>SC’ 55 G23S +G13c (15)
(c =cosf, s =sin0, 0 is an angle of fiber orientation); the constants ds; and dss, which characterize the
piezoelectric properties in the problem coordinate system are expressed in terms of the constants dj; in the
material coordinate system by the formulas (Appendix A, Egs. (A.34) and (A.35))

dsi = dsic* + dsps® — diese, dys = —dus + dasc, (33 = s (16)

For a composite material of the beam, where the piezoelectric constants are equal to zero, the constitutive
equation (14) have the form

g = 0 &
xx _ | Sn XX
(-5 o) )

The strain—displacement relations (Eq. (1a) and (1b)) for this simplified 1-D problem, due to Eq. (12a),
take the form

Ou 1 /0u Ow
Sxx—a_xa sz—i(g"’_&); Sxy_(); Syy_ov Syz_(); 8zz—O~ (18)

The delamination occupies a region xgq; < x < xq2, and is assumed to be above the middle surface of the beam
(where z = 0), at a location with z-coordinate z = z4 > 0. It is also assumed that the delamination extends
through all the width of the beam, —5/2 <y < b/2.
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Assumption 4. A very common assumption that the beam’s height does not change during deformation is
adopted here:

&, =0. (19)

This assumption in conjunction with the strain—displacement relation ¢,, = Ow/0z and the requirement of
taking account of discontinuity of a displacement w at the location of delamination (z = zg4, xq; <x < Xq2),
leads to the following assumed displacement w in the region with the delamination (xq; < x < xq2), assuming
that the delamination crack is above the middle surface of the plate (z4 > 0):

w(x,y,z, t) = [1 —H(Z)]VV()(X,)/, t) +H(2)W1(x,y, t) (xdl gxgde)a (20)

where Wy(x,y,t) is a transverse displacement (in z-direction) of the middle surface of the beam (where
z=0), W(x,y,t) is the transverse displacement of the upper surface of the delamination crack, and H(z) is a
Heaviside function that can be defined as

0  forz < zy,

1 — 1 1.
H(z) = H(z,zq) = lim — arctan— % 4 ~ = —signum(z —zq) +z =< 0.5 for z =z, (21)
p—0 T p 2 2 2
1 for z > zg,
where the function signum(z) is defined as follows
. 0 forz=0,
signum(z) = g for all other z. (22)
In the region without delamination (0 <x < xq1, xq1 < x <L), the assumed displacement has the form
w(x,y,z,t) = Wo(x,y,t) (0<x < xq1, xa1 <x<L). (23)
Assumption 5. From constitutive equations (14) we have
1
Oxz = —_28xz~ (24)
Sss

Therefore, in order to satisfy the stress boundary conditions (6), i.e. vanishing of the transverse stress o,, at
the outer surfaces of the plate and the surfaces of the delamination crack, the assumed transverse shear
strain ¢, must also vanish at the same surfaces. Besides, in order to represent the through-the-thickness
variation of the transverse stress o, realistically, we will assume that this stress varies quadratically in the
thickness direction of the plate. Then, according to the constitutive equation (24), the same through-the-
thickness variation of the transverse strain &. must be assumed. This leads to the following simplifying
assumptions about variation of the transverse strains in the thickness direction:

For the region of the zone 2 with the delamination (x4q; <x <xg;) and without attached or embedded
piezoelectric actuators (Fig. 1), it is assumed that

2e..(x,y,2,1) = oV (x, 9, 1) (1 + %z) (1 - i) (1 —H()] + ¢ (x,,1) < — 1+ %) (1 - i)H(z)

Zd Zd
(xa1 <x <xa2), (25)

where @(x,y,7) is an unknown function that characterizes the strain ¢, under the delamination crack
(=h/2 <z < zg, xa1 <x<xg2) and @ (x, y, ?) is the unknown functions that characterizes the strain ¢,. above
the delamination crack (zg < z< /2, xg1 <x < xa2).

For the region of the zone 2 without delaminations (x; <x < x4, xq; < x < L) and without attached or
embedded piezoelectric actuators (Fig. 1), it is assumed that
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2 2
28xz(x7yaza [) = qox(x,y,t) <1 _Zz) (1 +ZZ) (xl <X < Xd1;, Xd2 gng), (26)
where ¢, (x,y,¢) is an unknown function that characterizes the strain &,. in the region without delamina-
tions.

For the zone 1 of the beam, i.e. for the zone without delaminations and with the piezoelectric actuator
attached to the upper surface it is assumed that

2 2
= —_ — <
26, = Y, (x,1) (1 7 +2tz> (1 + hz) 0<x <xy, (27)

where ¢ is the thickness of the piezoelectric patch, and ¥ (x, ¢) is an unknown function that characterizes the
strain ¢, in the region without delaminations and with the piezoelectric actuator attached to the upper
surface of the beam. This assumed strain vanishes at the lower surface of the beam z = —//2 and at the
upper surface of the actuator, attached to the upper surface of the beam, i.e. at z = (h/2) + ¢ (Fig. 1).

3.2. Finite element formulation for the zone 1 of the beam (with the piezoelectric actuator attached to the
upper surface and without delaminations)

Let uy be a longitudinal displacement at the axis of the beam (at z = 0), i.e. uo(x, ) = u|,_,. In order to

express the longitudinal displacement u(x,z,¢) in terms of the unknown functions u(x,?), ¥ (x,¢) and
Wy(x,t), we will integrate the strain—displacement relation 2¢,, = 0u/0z + Ow/0x with the result

 Ou : ow
u(x,z,t) — Up(x,t) = i EdZ—/0 (2@2—&)(12

- /0 |:lﬁx(x,t)<1 szﬁ) (1 —l—%z) —aW‘)ai(;")} dz

(—42° + 61z + 31* + 6ht)z  OWp(x, 1)

— ¢ 28
Valx, 1) 3(h + 20)h x (28)
or
1YT|1 o0 0
200 - 1 gVO 29
t) = .
u(x,z,1) z? 0 0 (h+2£t)h lﬁo (29)
z 0 0 - % (h+12t)h !
With the use of Eq. (28) and the strain—displacement relation
-
XX T ax7
we can find the strain ¢,, in terms of the unknown functions:
1y'[& 0 0
o~z 2 |fu
&y = 2 0 8}( 21‘6)C K I/VO . (30)
23 (it+21)lh o W
z 0 0 3 (h+20)h ch

In this model, the virtual work principle for a finite element of a beam with a piezoelectric patch has the
form:
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/// mésxx—i—aw 258xz dV—l—/// ol 5£xx—|—oxz 20¢,,) dV+///pu5udV

Vbeam pdtch

/// (g + ) SwdV =0, (31a)

where (V) = (Moeam) + (Vparen) 1S @ volume of the whole finite element (beam and piezoelectric patch). Eq.
(31a) can be written in the form

h/2
/ / 58m + JM 258)52) dzdx + b/ / 58xx + sz 25sﬂ) dzdx + b/ / pitdudzdx
h/2 h/2 h/2

+b// p(g + b)dwdzdx = 0. (31b)
0 J-npn

According to the constitutive equation (A.36),

1 1 1 dy 0 1 dy V

(b) _ ' (b) ' (p) — 5 () — ‘ 31 09 ) 31

o) = 26, oV = &y, OF = 2e., o¥) = &gy +=— Eyy — = , 32
Xz _g;) I XX —(1[1,) Xz —(5};) xx g(ll S11 az E(ll;) ( )

where the superscript (b) where stands for a composite material of the beam, and the superscript (p) stands
for a material of the piezoelectric patch.
Substitution of constitutive equation (32) into the virtual work principle, Eq. (31b), yields

"2 1 e 1 ds V 1
/ / a,,x&xx 50 —26.20¢,. | dzdx + b / / — e — = — | 96w + 7 26206, | dzdx
h/2 o Ju2 |\ S} Syt S55

11

/2 h/2
+b/ / uéudzdx+b/ / uéudzdx+b/ / (g + W)owdzdx
h/2 h/2 h/2
+b/ / p® (g + W)owdzdx = 0. (33)
o Jup

Substitution of expressions for the displacements and strains in terms of the unknown functions, Egs. (23),
(27), (29) and (30), into the virtual work principle, Eq. (33), gives the virtual work principle in terms of the
unknown functions in which the maximum orders of the derivatives of the unknown functions Up(x, ?),
Wo(x,t) and ¥ (x,¢) are

Function Maximum order of derivatives
Uy 1
Wy 2
Y, 1

In order to perform a finite element formulation, we will represent the unknown functions Up(x, ),
Wo(x,t) and ¥ (x,t) by piecewise interpolation polynomials. If the virtual work principle contains spatial
derivatives of a field variable with a highest order being a number m, then an interpolation polynomial
must be chosen to satisfy the following requirements (Cook et al., 1989): (1) it must be a complete poly-
nomial of degree m or higher; (2) across boundaries between elements, the interpolation polynomial and its
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derivatives through order m — 1 (or higher) must be continuous. In the problem under consideration, the
interpolation polynomial will be chosen to be of the lowest allowable degree and the order of their de-
rivatives’ continuity. Therefore, we choose the first degree Lagrange polynomials to interpolate the un-
known functions Uy and ,

Uy = M){To}, v, = mI{v.}, (34)
(I1x2) (2x1) (1x2) (2x1)
where
M| =M M, Mlzl—? Mzz? (35)
R R G bt <36>

Here x is an x-coordinate in a local (element) coordinate system, whose origin coincides with the left node
of the finite element, and / is a length of a finite element. Following the same rules, we choose the Hermit
polynomials of the third degree to interpolate ;:

(Ix4) (4x1)
where
\_NJ = LN[ Nz N3 N4J, (38)
(1x4)
3% 2% IS o 3 2% ¥ X
M=l-Tg+7 Me=x-—TF+y. M=F-—73  N=-7+% (39)
50
7 % (0)
Wyt = X 40
{Ioh=1 o (40
=)
By introducing a column-matrix of nodal parameters {é}(gxl), the components of which are defined as
_ _ W _ _ _
01=U0(0), 02=Wp(0), 0s=—2(0). 0=, (0), 05=Uo(D), 0s=M(0),
- oW _
br==2(0), Oy =y.(]) (41)

and by substitution of polynomial approximations of the unknown functions (Egs. (34) and (37)) into the
virtual work principle for a finite element, written in terms of the unknown functions, one can obtain the
virtual work principle for a finite element in terms of the nodal parameters:

{0} { [#]{8} + [{0} - (10 =0 @)
(1x8)  \(®x§)(8xi) (@B sx1) &V

where expressions for matrices [], [k] and vector {g} are presented in Appendix B. Equations of motion of
a finite element for the zone 1 of the beam, i.e. for the zone without delaminations and with the piezoelectric
actuator attached to the upper surface (Fig. 1), follow from Eq. (42):
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i) {0} + 10 {0} = (@ (). (43)

<8X8)(8><l) (8><8)(8><1) (8x1)

3.3. Finite element formulation for the zone 2 of the beam (without actuators and with the delamination crack )

In the zone 2 of the beam (Fig. 1) there are no attached piezoelectric actuators, and this zone contains a
region with the delamination (xgq; < x < x42), where the assumed transverse shear strain ¢, has the form of
Eq. (25), and two regions without delaminations (x; <x < x4, Xq2 < x < L), where the assumed strain ¢, has
the form of Eq. (26). In order to represent the assumed strain ¢, with a single expression, valid for both
regions of the zone 2, with and without the delamination, we will use the extended Dirac’s function, that
can be defined by the formula:

1. X — Xq1 X — X42
D(x,xq1,x02) = — }jlm arctan — arctan
T p—0

p p

1 | 1 for xq1 < x < x4,
= 5sighum(x — xq) + 5 sighum(—x + xp) = 3 for x =xq or for x = xg, (44)
0 for all other x,
where
. [0 forx=0 45
signum(x) = \i_l for all other x. *

Then, expressions (25) and (26) for ¢,, can be written as a single expression valid for the whole domain of
the zone 2 of the beam:

2 2 2 z 2z
=(1 = _Z z (1) z _z — @ — =
2e. = (1 D)%(l hz> (1 + hz) +D|:(px (1 +hz> (1 Zd)(l H) + ¢y ( 1+ P )

x (1—3)H] (v <x<L). (46)

Zq
According to Eq. (20), the assumed displacement w in the region with the delamination is
w(x,y,z,t) = [ — H(z,z4)|Wo(x,,8) + H(z,za) W1 (X, 3, 8)  (xa1 Sx < Xa2)-
According to Eq. (23), in the region of the zone 2 without the delamination, the assumed displacement w
has the form
w(x,y,z,t) = Wo(x, »,1) (%1 <x < xq1, X2 <x<L).
The last two equations can be combined into a single one that is valid for the whole domain of the zone 2:
w= (1 —-D)W + D[(1 — H)W, + HW] = Wy + DH(W — W) (x1 <x <L). (47)
We now need to find an expression for the longitudinal displacement u(x, z, ¢) such that it takes account
of discontinuity of the displacement u at the surfaces of the delamination crack (at z = zy) and satisfies the

strain—displacement relation 2¢,, = 0u/0z + Ow/0x. If the delamination crack is above the axis of the beam,
i.e. if zg > 0, then the sought expression for u(x,z,¢) can be assumed to have the form

u(x,z,t) = Up(x,1) + H(z,24)[U) (x,2) — Up(x,1)] + /02 (ZSXZ - 2—?:) dz, (48)
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where Uy (x, ) = u|._,, and U, (x,?) is a function that characterizes discontinuity of the displacement u at the
surfaces of the delamination crack (i.e. at z = z4). Substitution of Eq. (46) for the assumed ¢, and Eq. (47)
for the assumed w into Eq. (48) gives the result:

o 4
w=(1-D)|th = Gt o, (- 352 ) | +0](1 = )0 + UL + o1 = 1)
2 L 6za—3h, N 2 L 6zg+ 3
— Hl ——=— = 2
X( Shza” T 6hzg © 1) T O 3hza” T 6heg z
om  om
—((I—H)§+Ha—x>2:| (.X1<)C<L). (49)

Substitution of Eq. (49) for u and Eq. (47) for w into the strain—displacement relation ¢, = % gives an
expression for the strain component &,., in terms of the unknown functions

an aZVVO Gq) 4 3 aU() 6U1 a(/)(l)
= (1— (oo 2 pl( - R L S
e = ( )[ax a2 ST Ot )| TR r (- H)

2 L 63, e 2, 6 +3h
_ gl - _
X( 3" T 6hzg “) T " T 6hzg

*W, W
- <(1 —H) o5 H s )Z] (50)

The virtual work principle for the zone 2 of the beam can be written similarly to that for the zone 1 of the
beam (Eq. (33)):

/2 1 e
/ / 8“58” sl 2¢,.20¢,. dzdx+b/ / Y5oudzdx
h/2 S h/2

55

11/2
+b/ / ®) (g + i) owdzdx = 0 (51)

h/2

In order to perform a finite element formulation for the zone 2 of the beam, we will represent the un-
known functions Uy(x,?), U (x,1), Wy(x,t), Wi(x,1), @.(x,1), oV (x,1), ¢?(x,t) by piecewise interpolation

polynomials. In the expressions for the displacements and strains in terms of the unknown functions (Egs.
(46), (47), (49) and (50)) and, therefore, in the virtual work principle, the maximum orders of derivatives are

Function Maximum order of derivatives
Uy

1
1
2
m 2
1
1
1

In the problem under consideration, the interpolation polynomial will be chosen to be of the lowest
allowable degree and the order of their derivatives’ continuity. Therefore, we choose the first degree
Lagrange polynomials to interpolate the unknown functions Uy, Ui, @,, ¢V, o2
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Uy = |M] Itz

}, Ul = LMJ{Ul}a Dy
(1x2) ) )

Mg} o = {0 = M {e7},  (52)
(1x2) (2x1 ( (Ix

(I1x2) (2x1) (1x2) 2x1) 2) (2x1)

N o _JUOY o [e0 iy el
>}’ {Ul}‘{m(l)}’ {¢x}‘{2x<z>}’ W—{Zm}’
()= {000

and the matrix of shape functions |M | is defined by Eq. (35). For interpolation of functions W, and W, we
choose the Hermit polynomials of the third degree:

0
x1

where

W= (N|{}, W= N |{TR), (54)
(1x4) (4x1) (1x4) (4x1)
where
(0) W (0)
AL 10 ——r )
=y - AT= o (¢ )
G (1) ()

and the matrix of shape functions |N| is defined by Egs. (38) and (39).
The vector of nodal parameters of the finite element for the zone 2 of the beam is introduced as follows:

o B _om
- ox (0)7 05 - VVI(O)a 06 - ox (0)7

0; = 0,(0), 05 =0(0), 0h=020), 0=0Uyl), 0n=Ull), 05=W(l),

ow
(D 0u=W(D), Os==2(), Os=0), Or=0l"()), Os=¢ ().  (56)

Then, equations of motion for a finite element of the zone 2 of the beam, derived from the virtual work
principle (51) are

m] {0} + K] {0} = {q}

(18x18)(18x1)  (18x18)(18x1) B (18><1)’

0, = Up(0), 0, =U,(0), 05 =Wm(0), 04

013 =

(57)

where the matrices [m], [k] and the vector {f} are presented in Appendix C.

4. Verification of results of the FE analysis

In order to verify an accuracy of finite element models based on the theory presented above, we con-
sidered several example problems for cantilever beams with piezoelectric actuators attached near the
clamped edges (one actuator attached to each beam, Fig. 1).

In the first example problem we considered a wooden beam without a delamination, and in the FE model
the transverse shear strain ¢, was set equal to zero (by setting equal to zero the nodal parameters associated
with the unknown functions ¢,, ¢ and ¢?). The beam had the following characteristics: length of the
beam L = 430.4 x 1073 m, density of the wood: p = 464.52 kg/m3, width of the beam » = 3.81 x 1072 m,
thickness of the beam /% = 1.9025 x 102 m, Young’s modulus of wood in the direction of the fibers:
E, = 1.0897 x 10'® N/m?, shear modulus G;; = 0.43588 x 10'° N/m?. Elastic compliance coefficients in the
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laminate coordinate system, S;; and Sss, are computed by the formulas (A.32) and (A.33). Edges of the
wooden beam were cut along the visible direction of fibers, so 6 = 0, therefore

- 1

Sss = o 2.2942 x 107" m?/N,

13

- 1
S =—=0.91768 x 107" m?/N.
E,

In the finite element program, the length of the delamination crack was set equal to zero by setting equal
the coordinates of the left and right tips of the delamination crack, i.e. xq4; = x4>. An analytical formulation
of this problem, for a beam without the delamination and with ¢,, set equal to zero, can be written in a form
of the differential equation
o*w *w
. i m—=0 58
a2 "o (58)
(where m is a mass of the beam per unit length, and 7/ is a moment of inertia of a cross-section) with
boundary conditions, which for the cantilever beam have the form

EI

w(0) =0, 2—;”(0) =0. (59)

The solution of the differential equation (58) with the boundary conditions (59) gives the following natural
frequency v=1/T

2 |EI
n = = ) 60
"= on L (60)
where ¢, is computed from the equation
cosc,coshe, +1=0. (61)

The natural frequencies for the beam without delamination and without shear strain taken into account,
computed analytically from Eq. (60) and with the use of the FE model with 20 elements (based on the FE
formulation presented above) are shown in Table 1.

In the second example problem, the same wooden beam without a delamination was considered, but in
the finite element model the transverse shear strain ¢, was taken into account. The frequencies, computed
with the use of the finite element model, were compared with the frequencies measured experimentally with
the use of a laser vibrometer, PSV-300, a POLYTEC manufactured product. A size and weight of the

Table 1

Natural frequencies of a beam without debonding, transverse shear strain set equal to zero
v (s7") from analytical solution v (s7!) from FEA (20 elements)
80.354 81.7 (error 1.7%)
503.57 516 (error 2.5%)
1410 1518 (error 7.6%)
2763 2934 (error 6.1%)
4567 4490 (error 1.7%)
6823 5464 (error 20%)
9529 10,583 (error 11%)
12,688 13,727 (error 8.2%)
16,296 16,291 (error 0.03%)

20,357 20,000 (error 1.8%)
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Table 2
Natural frequencies of a beam without debonding, in the FE model transverse shear strain taken into account
v (s7!) experimental v (s7") from FE solution (20 elements)
80 81 (error 1.3%)
1068 998 (error 6.6%)
3192 3041 (error 4.7%)
5242 5247 (error 0.1%)
7947 7565 (error 4.8%)
10,850 10,523 (error 3.01%)
12,710 12,885 (error 1.4%)
15,780 15,797 (error 0.1%)
15,910 16,054 (error 0.9%)
19,060 18,975 (error 0.4%)
Table 3
Natural frequencies of a beam with debonding, in the FE model transverse shear strain taken into account
v (s7') experimental v (s7!) from FE solution (20 elements)
85.9 86.4 (error 0.6%)
341 301 (error 11%)
3356 3287 (error 2%)
4810 4829 (error 0.4%)
6485 6365 (error 1.8%)
7793 7814 (error 0.3%)
8488 8591 (error 1.2%)
9119 9294 (error 1.9%)

piezoelectric actuator, attached to the upper surface of the beam near the clamp (Fig. 1), was very small as
compared to the size and weight of the beam. Therefore, the influence of the presence of the actuator on
the natural frequencies of the beam was negligibly small. The excitation voltage to the piezoelectric ac-
tuator contained frequencies in the range from 0 to 2 x 10* Hz. Results of this comparison are presented in
Table 2.

In the third example, a wooden two-ply beam with debonding (delamination) between plies was con-
sidered. This two-ply beam was constructed by adhering two separate wooden plies. The delamination was
permanently formed by removing the adhesion.

The material and geometric characteristics of this delaminated beam were the same as in the previous
example problems. The delamination crack was parallel to the surfaces of the beam. The x-coordinates of
the tips of the delamination crack were x4, = 149.2 x 107> m and x4, = 353.15 x 1073 m, and z-coordinate
of the delamination crack was zy = 3.34 x 1073 m. In the finite element model the transverse shear strain ¢,,
was taken into account. A comparison of computed and experimentally measured frequencies is presented
in Table 3. The higher computed frequencies are inaccurate.

5. Conclusion

A theory of beams with delaminations, presented in this paper, is developed for the use in model-sup-
ported damage identification. The frequencies computed with the use of the finite element model, based on
the formulation presented in this paper, are in good agreement with experimental results. This shows the
validity of the simplifying assumptions adopted in the present paper for constructing a 1-D theory of a
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beam with delamination. Therefore, a similar approach, with the use of the Heaviside function and ex-
tended Dirac function, can be attempted for constructing a 2-D plate theory.

Appendix A. Constitutive equations of an anisotropic piezoelectric

The stress, strain, electric field and electric displacement within a piezoelectric material can be fully
described by a pair of electromechanical equations:

&;j = Sijk10w + d 6, (A1)
D; = dyo1 + o€ &, (A.2)
\u/-/
Cik

where ¢; is a strain tensor, o;; is a stress tensor, s;; is a compliance tensor, dy; is a tensor of piezoelectric
constants, & is the electric field intensity applied to the piezoelectric element; D; is the electric displacement,
€ 1s the dielectric permittivity tensor. In the subsequent text, the following notation will be introduced for
simplicity
ik = €o€ir (A.3)
The second term in Eq. (A.1), di;&, takes account of the converse piezoelectric effect, i.e. deformation
under an applied external electric field. The first term in Eq. (A.2), dy04, takes account of the direct pi-
ezoelectric effect, i.e. the fact that stresses (or strains) in piezoelectric dielectrics induce in them electric
fields.

With the use of compact notations for stresses and strains, Eqgs. (A.1) and (A.2) can be written as fol-
lows:

= Spqaq + dkp@@k; (A4)
Di = diqaq + Cikg)ka (AS)

where i=1,2,3; k=1,2,3; p=1,...,6;¢g=1,...,6. In Egs. (A.4) and (A.5), the quantities with indices
do not transform as components of tensors. In matrix form, the constitutive equations (A.4) and (A.5) can
be written as follows:

{e} = 18] {o} + [d] "{&}, (A.6)
(6x1) (6x6)(6x1) (6x3) (3x1)
{D} = [d] {a} + [C] {6} (A7)

(Bx1)  (3x6)(6x1)  (3x3)(3x1)
Premultiplying Eq. (A.6) by [C] = [S]™', we obtain
{o} = [C] {e} = [e] "{&}, (A-8)

(6x1) (6x6)(6x1) (6x3) (3x1)
where

le] = [d] [C],
(3x6) (3x6)(6x6)

is called a piezoelectric stiffness matrix, and the corresponding transposed matrix is

] "= 1C)"[d] "= [C] [d] .
(6x3) (6x6) (6x3) (6x6)(6x3)
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Eq. (A.8) can be substituted into Eq. (A.7) with the following result:
{D} = le] {e} + [{] {6}, (A.9)

Bx1)  (3x6)(6x1)  (3x3)(3x1)

where

6] =[]~ [d] [ "

(3x3) (3x3) (3x6)(6x3)
In summary, the constitutive equations of a piezoelectric can be expressed either by the pair of matrix

equations (A.6) and (A.7) or by the pair of matrix equations (A.8) and (A.9), with relations between the
matrices being the following:

[Cc1=1s]", le] = [d] [C], & =[]~ [ [ " (A.10)

(3x6) (3x6)(6x6) (3x3) (3x3) (3x6)(6x3)

We will consider a piezoelectric material with orthorhombic mm2 symmetry, such as PVDF or lead
PZT. In the manufacturing process, the planes of elastic symmetry can be made the same as the planes of
piezoelectric symmetry. In this case, the constitutive relations in the principle material coordinate system
have the form (Mitchell and Reddy, 1994; Varadan et al., 1989; Nix and Ward, 1986; Dunn and Taya,
1993):

&1 C11 C12 C13 0 0 0 0 0 €31 (]
& C12 C22 C23 0 0 0 0 0 €3 (%)
&3 C13 C23 C33 0 0 0 0 0 €133 g3
&4 0 0 0 C44 0 0 0 €24 0 04
&5 = 0 0 0 0 C55 0 €15 0 0 [ y (All)
&6 0 0 0 0 0 C66 0 0 0 06
5)1 0 0 0 0 €1s 0 611 0 0 D1
gz 0 0 0 €4 0 0 0 622 0 D2
&3 les en e 0 0 0 0 0 &) Ds

where the stiffness coefficients C;; are written in terms of engineering constants as follows (Reddy,
1996):

(—E> +V3E3)E? —(viaEy + va3visE3 ) E\Ey

Cy = Cp =

Y ! y :

C,y = v Vi) EbEr By c, = Bt visE3)E3
4 ’ A ’
Cpn = —(v3E1 + vizvieEnr) 2B Con — (—E\ +v},E>)E>E5
' 4 o O y :
Cu = G, Css = G, Ces = G2, (A.12)
where

A=—FEE,+ E1V§3E3 + V%zEg + 2vpErvysvizEs + V%3E2E3. (A13)

If 6., = 0, then the equation for ¢, in constitutive equations (A.11) can be discarded (because in case of
0., = 0, the term (1/2)a..¢.. does not enter into the expression for the strain energy density, or expression
0..0¢,, does not enter into the expression for the virtual work), and, therefore, the third row and the
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third column in the 9 x 9 matrix of Eq. (A.11) can be deleted, leading to the following constitutive
equations:

&1 _ S
On On 0 0 0 0 0 o5 ! g1
& On O» 0 0 0 0 0 o3 )
& 0 0 Ouw 0 0 0 gy O 04
I3 0 0 0 0 0 0
s | _ Oss 015 7\ (A.14)
&6 0 0 0 0 Qs O 0 O o
(’jﬁl 0 O 0 Q15 0 C11 O 0 D]
& 0 0 0y O 0 0 ¢ O D,
& Loy 0 O 0 0 0 0 ¢l D;
3
where
E? ViR E L E> E\E,
On = E1——V%2Ez7 Op = m> Opn = m> Ou = G, QOss = Gz, Qss = G,
01 = Eies3viavas + Eressviz — e Ey + e3vhEs 00, = e viEl + e3vizvinEs — enkE| + envhEs
31 v%zEz — E] ’ 32 V%ZEZ - El 7
04 = €24, Q15 = €15, i =2¢%u, Sun==%n,
EZV%Z Ezv%z 5 2V13V23V12 V%3 o E1

¢

Gz = C33 + e el +
33 E] — V%zEz 3 E3(E1 — V%zEz) 33 E] — V%ZEZ 33

e+ 4
E] — V%ZEZ 33 E] — V%zEz ©3
V§3E1
Ez(E] — V%zEz)

E, 2
Es(vhE, —Ey)

e+ (A.15)

In the problem coordinate system, rotated by an angle 6 counterclockwise with respect to the principle
material coordinate system, the constitutive equations have the form:

) [ew . 0 0 0 0 0 a]

> On On _0 _0 0 0 0 op &y

% 0 0 g44 g45 0 04 04 O 2¢,.

Oe: | _ 0 0 Qi Oss _O Qs @5 O o (A.16)
Oy 0 0 0 0 Qg 0 0 oy 2e [

D, 0 0 o4 s 0 S S O ?‘

D, 0 0 02y 25 0 % % O é

D. 1@ @ 0 0 g5 0 0 Ty

where, with the use of notations ¢ = cos 0, s = sin 0, the transformed reduced stiffness coefficients Q.j, pi-
ezoelectric stiffness coefficients in case of ., = 0, g;;, and permittivity coeflicients in case of g.. = 0, G, are
written in terms of the corresponding quantities in the principle material coordinate system as follows
(Reddy, 1999):
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011 = Onc* +2(012 + 2066)57¢ + Ons’,

01, = (011 + 0 — 406)s°c” + Ona(s* + ),

015 = (O — 012 = 2046)5¢ + (Q12 — On + 2046)s’c,

O = Ons" +2(Qi + 2066)s°¢? + Onc?,

Oy = (11 — 012 = 2066)s7c + (Q12 — On + 206)s¢,

Oy = Ouc® + 0sss”, Oys = (Oss — Qui)cs,

Oss = Os5¢> + Ous®,  Ogs = (On + On — 201 — 2066)5°¢> + Ogs(s* + ¢*),
031 = 0317 + 005", 0y = 0318 + 00, O35 = (031 — 0n)cs,
1a = (015 — 024)€8,  @os = 00C” + 0155,

Q15 = Q15¢ + 0248°,  Oo5 = (215 — 024)C5,

St = C1c +6ms,  Cn = cns +Snd,

C33 =G, Cin = (Cn — Sw)es. (A.17)

A.1. Constitutive equations for a beam

For a beam that bends in the x—z plane, we can assume
O =0y =0y, =0 (A.18)

in addition to the assumption o, = 0 adopted for the plate. In this case it is more convenient to use
constitutive relations in the form of Egs. (A.6) and (A.7). For an orthotropic material, these constitutive
equations, in the principle material coordinate system, have the form

& Si Sz Sz 0 0 0 g diy dy  dy
& Sp 8% S 0 0 0 P diy dp dp &
el _[S3 83 S3 0 0 0 03 diz dy ds
&4 - 0 0 0 S44 0 0 04 + d14 d24 d34 ?2 ’ (A19)
& 0 0 0 0 Sss 01]]os dis dos dis| 7
&6 0 0 0 0 0 Se gs dig dy dis
g
D, dy dn dy du dis die ZZ i G Gs &
Dy p=|dn dn dy dyu drs dy Gi + 1 o G &y ¢, (A.20)
D; dy dy dy dyu dys die o5 Gi G G &3
T¢

where the compliance coefficients S;; are expressed in terms of engineering constants by the formulas

1 Vi2 Vi3 1 Va3 1
Si=—, Sp=-2 Sy=-—2 S§p=—) Sp=--2, Sy=—
11 El ) 12 Ev1 ; 13 Ev1 ) 22 E2 ) 23 E2 ) 33 E3 )
1 1 1
Ssu=—, Sss=—, Se6=—. A2l
44 G237 55 G137 66 Glz ( )

In the laminate coordinate system, rotated clockwise by angle 6 with respect to the principle material
coordinate system, the constitutive equations have the form
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Exx [ gll

&y Si>

&z S
2¢,. - 0
2ey; 0
2y L 0
D, di
Dy p = |dy
D, ds

where the matrices in
coordinate systems as

(S S Si
S S»n Sx»
S Sy Sy
0 0 0
0 0 0

0 0 o

(S Sz
S S»
Sz Sx

X
0 0
0 0
0 o

_§11 §12 §13
§21 §22 gzz

G G G

-{311 6?21 6:1131
do dn dp
di dy dy
diy dy dy
dis dys dss

| di¢ dy die
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§12 §13 0 0 07 Oxx 311 821 &ISI
§22 §23 0 0 0 Oy dy, dn dn &
Sy S - dis dy d g
Sy Si 70 70 0 0. n 43 dn 4n &\ (A.22)
0 0 Su S5 0 0z diy du dy é
0 0 §45 555 0 Oxz a1 5 825 a35 ’
0 0 0 0 BSel\loy | dis dy  di |
O-xx
- - - = - Oyy s 5 % o
dr, diz du dis dis o i G G &y
dy dy dy dys dy o + 1l (n In &y ¢ (A.23)
dy dyy dy dis dy ayz Gi G G &
Oy

the problem coordinate system are expressed in terms of matrices in the material
follows (with the use of notation ¢ = cos 6, s = sin 0):

0 0 0 ] [ ¢? 52 0 0 O —sc
0 0 0 52 c? 0O 0 O sc
0 0 0 0 0 1 0 O 0
344 §45 0 0 0 0 c S 0
Sis Sss 0 0 0 0 —s ¢ 0
0 0 S [ 2s¢ —2s¢ 0 0 0 c*—s?
S; 0 0 07][c s 00 0 2sc¢ |
S3; 0 0 0 s ¢ 0 0 0 —2sc
S 0 0 0 0O 0 1 0 O 0
0 S44 0 0 0 0 0 ¢ —s 0
0 0 S55 0 0 0 0 s c 0
0 0 0 Se]|l-sc sc 00 0 -5
c —s 0 G G G c 0
=(s ¢ O Or G O -s ¢ 0f,
0 0 IJLG &G GidLO 01
A £ 0 0 0 —sc di  dy
52 A 0 0 0 sc din dxn
10 0 1 0 O 0 y diz  dxn
- 0 0 0 C S 0 d14 d24
0 0 0 —s ¢ 0 dis  ds
2%¢ —2s¢ 0 0 0 (2—¢2 dis  da

, (A.24)
(A.25)

d31

s c s 0

Sl [ (A.26)

Ball o 01

d35
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If 6, =0, =0, =0 and & =&, =0 (these are the assumptions for a beam), then Eqs. (A.22) and
(A.23) take the form

e WAL fay s P I A
(D= [d d] {0} 5000, (A2%)

In the last two matrix equations, the rows corresponding to &,., ¢, &,, Dy, D, are discarded because these
quantities do not enter the virtual work principle if .. = ¢, = 7,, = 0 and &, = &, = 0. From Eqgs. (A.27)
and (A.28) we can obtain the following relationships

1 d:
Oxx _ i O Exx _ ﬁ éﬂ A29
ge [ L]0 L2 & (P70 (A.29)
= Sss XZ Sss

[ ds]f e = dy d
{DZ} - |:§“ §55:| { 28xz} + ( . E]] §55 é:. (ASO)

Egs. (A.29) and (A.30) can be written as a one matrix equation

L 0 L))
S S
O xx 0 1 dss Exx
O p = Sss Sss 2, o, (A.31a)
D. dy ds Z3 _ fzzl i%s 6,
St Sss 375 Sss
or, in view of the relationship &, = —0¢/0z,
R dy
S S
O-xx 0 1 d35 SXX
O p = Sss Sss 28 5. (A.31Db)
_ - _ ~ ~ o
D. du b —Cn+ T i
S Sss > S Sss

According to Egs. (A.21) and (A.24), the compliance coefficients in the problem coordinate system, Sh
and Sss, that enter into Egs. (A.31a) and (A.31b), are expressed in terms of the engineering constants by the
formulas

_ 1 1
Sss = — 5% + —¢? A.32
5Tt TG (A3
— 1 4 1 4 1 Vi \ 72 »

= — — 2z ) A.33
S]] ElC +E2S + (Glz E1 )S C ( )

The constants d3; and dss that characterize the piezoelectric properties in the problem coordinate system
are expressed in terms of the constants d;; in the material coordinate system by the formulas (derived from
matrix equation (A.26))
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dsi = dsic* + dips® — daesc, dys = —dus + dssc, (A.34)

and, according to the transformation equation (A.25),

G =G (A.35)

For materials with orthorhombic mm2 symmetry, such as PVDF or lead-zirconate (PZT), a piezoelectric
constant dss of Egs. (A.31a) and (A.31b) is equal to zero. Therefore, Eq. (A.31b) takes the form

L0 d
o Su S e
XX 0 ; O XX
Oy, = Sss ZaSXZ . (A36)
D, 3 0 3 ‘3221 =
=L — + =2 0z
S 4,33 S

Appendix B. Matrices of the finite element for the zone 1 of the beam (with the piezoelectric actuator attached
to the upper surface and without delaminations)

Expressions for the stiffness matrix, mass matrix and load vector of the finite element will be written with

the use of an auxiliary matrix [G], defined as follows

6] = 0] &), .
(3x8) (3x8)(8x8)
where
T 0 0 0 0 0 0 07
000 01 O0O0TO0
01 00 O0O0OO0OTO
~ 001 00 0 OTUDO
Rl = (B.2)
(8x8) 000 0 01 00O
000 0O O0OT1TO
0001 0O0O0OTPO
L0 O OO O 0 0 1]
M| [0] (O]
(1x2)  (Ix4) (Ix2)
A 0 N 0
([3%) = (Ifxg) (L1x4J) (Ex% ) (B.3)
0] [0] [M]
L (1x2) (1x4) (1x2)
=111 1) (B.4)
(1x2)
M =[1-3%+% 5-Fen ¥ -5en] (B.5)
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4479
Then the element mass matrix is
[m] =
(8x8)
10 0 B 1 1\T 1 0 0
! 0 - % 1 B w2 | 2z NE 0 - § 1 B
b iy 0 d= RIGE:
0 0 0 (h+§z)h (3x8) w2 | 22 2z 0 0 (h+§z)h (3x8)
4 1 3 3 4__1
_O 0 =3 (20 z z 0 0 =3 (h20)h
1 0 0 T 1 13T 1 0 0
I 0 - % 1 _ |z z 0 - aax 1 _
v b / . @ / p®) dz L |G
0 0 0 (h+§z)h (3x8) w2 | 22 72 0 0 (,,+§t)h (3x8)
41 3 3 4 _1
0 0 -3 (h20)h z z 0 0 -3 (h20)h
0 0 0 0 0O
)2 1 _ ‘ I 1 _
+b / p®dz / [G] |0 1 O|[G]dx+b / p® dz / [G] |0 1 0]][G]dx,
—h)2 0 (8x3) (3x8) /2 0 (8x3) (3x8)
0 0 0 0 0O
(B.6)
the element stiffness matrix is
20 0 ' | 1T 9 0
] b/] 0 & g ] /m DR I g [G] dx
(8%8) 0 0 0 (hfét)h a% (3x8) —h/2 z? S(ﬁ) z2 0 0 (hfér)h % (3x8)
8 3 3 3
0 0 _% (h+12t)h ax z z 0 0 _% (h+12t)h a_l
0 0 0 1 0 0 1
I h/2 1 . B
+b/ @ o o 0 / showlt o2 2] |0 0 F-i |G ax
0 (8x3) ) ) 4 —h/2 X 555 4 (3x8)
h bt (h+20)h z 00 - (=01
L0 0 ' | 3T ) 0
o % & ~ =11 )¢ 0 % & _
* b/ 2 6] / > s 2 dz 2 [G] dx
0 0 R ) h/2 |8 |z 0 0 Togh | Bx8)
3 3 )
0 0 _g (h+l2t)h % z z 0 0 _% (h+]2z)h a%
0 0 0 1 0 0 1
[ T t 1 -
+b/ G0 o 0 / syl 2)dz [ |00 F-i | (@] a
0 (8x3) 5 5 . h/2 5 S . (3x8)
BT mn U z 0 0 —gam

(B.7)
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the vector part of the element force vector {q}V(z) is
(8x1)

29 0 .
_ bdy [0 -5 2 | 1
g9y = ——— F 2% D G dx / — = dz
iixl}; tJo 0 0 (iwét)h ar , ([3><8}) e Zj Si‘;)
1
0 0 T3 G20k ox z

h/2 r_ [0 i r [0
—bg(/ p<b>dz>/ [G] {1 dx—bg</ p<p>dz>/ [G] {1 pdx. (B.8)
—h/2 0 (8x3) 0 h/2 0 (8x3) 0

Appendix C. Matrices of the finite element for the zone 2 of the beam (without piezoelectric actuators and with
delaminations)

Expressions for element matrices [m], [k], {r,;} and {f} are written in this appendix with the use of the
following auxiliary matrices

(L%J) 0] (0] [0] [0] [0] |O]
10] (LIMZJ 0] [0] [0 [0] O]
0] (0] <L1N4J> 0] [0] [0] O]

0] = 0] 0] 0] (LlNJ) o) o) (o] | (C.1)

(7x18) 0] (0] [0o] [O] (L{WZJ> 0] 0]
0] 0] [0 [0] 0] (L{sz) 10]
0] 0] [0} [0] [0] O] (LleJ)

where

M|=|1-% z|

PIXZJ)\‘][J

(1x4)
10 00 00O0O0O0OO0O0O0O0O0O0O0 0]
00000O0OOO0OOT1O0O0O0O0O0O0O0 0
01 0000O0O0O0OOO0OOO0O0OO0O0 O
00 000O0OOO0OOOTLIOO0OO0O0O0O0 0
001 00O0OO0O0OOO0OOOO0OO0GO0 O
00010000O0O0O0OOO0OOGO0O0
00000O0OOO0OOOO0OTI1O0O0O0O0O0 0
00000O0OOO0OOOO0OTIO0O0O0GO0 0

® = (0000 1000000000000 0 )

ST 1000001 00000000000 O]

1190 00 000000O0O0O0O0T1O0O0O0 O
00000O0OOO0OOOO0OOO0T1O0GO00
00000O0OT1UO0O0O0OO0OOO0OO0GO0 0
00000O0OOO0OOOO0OOOO0OT1O00
00000O0OOTIOOO0OOOO0OO0GO0 O
00 000O0OOO0OOOO0OOO0O0O0T1 0
00000O0OOOTI1O0OO0O0OOO0OO0GO0 0
(0000 O0O000O0O0OO0O0O0O0O0 0 1]
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G] = [0] [R],

(7x18)  (7x18)(18x18)

1l —DH DH 0 0 0 0 0
0 0 (D-H)L HL (1 —D) (1 —H) -H
d,) = 624—3h 624430 |
<[4Xj) 0 0 0 0 0 (I1-H)%>= H 6thzrd
0 0 0 0 5:(1-D) —=(1-H) —3£H
0 T
0
1 — DH
[0,] = DH ,
(1x7) 0
0
0
_ - T
(1-DH)2L 0 0 0
DH 2 0 0 0
0 (D-H)Z; 0 0
[0..] = 0 HE 0 0 :
(4x7) 0 (1-D)L 0 —-4(1-D)2
0 (1-m% (-H)%FE —(1-H)%
6z4+3h
.0 —HE HY= 5 —wHE
I 0 0 0 17"
0 0 0
(D—H+1-DH)2 0 0
0,.] = H(1+D)2 0 0
(3x7) 1-D 0 4.(1-D)
6z4—3h
1-H s(I—H)%5= —5-(1-H)
6z4+3h
i —H e —wt ]

[Bu] = [&t] [G} )

(4x18)  (4x7)(7x18)

[BW] = [8W] [G} )

(1x18)  (1x7)(7x18)

B:.] = [0.,] [G]
(4x18)  (4x7)(7x18)

[Bc,u] = [acx,-] [G] )

(3x18)  (3x7)(7x18)

1

[A]ZLI z 2 ZSJT_—LI z 22 Z3J,

(4xd) MY
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~ T 1

Ay =1 z 22 2| =—, C.13
=t Is, c13)
M =1[1 2z 37 JT;U 2z 32, (C.14)
A =1 z 2 23]T,0[1 z 2 2] (C.15)

Then, the element stiffness matrix is

h/2 h/2
=b / / su I:ngv dZ dx+b / / axz [Bsu] dzdx
18><18) h/2 (18x4) 4><4) (4x18) 1/2 (18x3) 3><3)(3><18

jgs) ! N s} T
o[ (X[ m e een (3 [ m T A o e as cao
& 18><4 ) (4x4)(4x18) 0 = Ju (18x3) (3x3)(3x18)
where (, are coordinates of interfaces between plies of the composite beam, N is a number of plies in the
composite beam;

the element mass matrix is

h/2 h/2
] —b/ / 1 B, dzdx—l—b/ / (B,] dzdx
(18x18) h/2 ( 18><4 4><4) 4><18 h/2 ( 18><1 1><18

—b/ Z / 8. [4] [B.] dz dx+b/ / 18] (5, d= ) . (C.17)

(18x4) (4x4)(4x18) l><18)

the element force vector is

{f} = —bg/ /h/2 B,) pdzd)‘c:bg/ XN;[ 1B,] "pdz ) dx. (C.18)

(18x1) h/2 ( 18x1 (18x1)
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